Publicación semestral   •  ISSN 2683-2968  •  Marzo 2023   •  Número de revista 7
DOI de la revista: https://doi.org/10.22201/dgtic.26832968e

DOI del número: https://doi.org/10.22201/dgtic.26832968e.2023.7

Resumen

La pandemia por la COVID-19 generó una gran cantidad de adelantos computacionales para el área médica, en especial en su modalidad a distancia. Por estas razones, los algoritmos computacionales han tenido una gran incidencia, en especial aquellos que pertenecen al área de inteligencia artificial (IA), siendo un ejemplo representativo las redes neuronales convolucionales (siglas en inglés CNN, Convolutional Neural Networks).
Este trabajo muestra el desarrollo de un sistema que apoya al diagnóstico de las enfermedades pulmonares generadas tanto por la COVID-19 como por la neumonía, mediante la implementación de una arquitectura de redes neuronales convolucionales aplicadas a imágenes de rayos X. El algoritmo que se presenta es capaz de distinguir si los pulmones se encuentran sanos o padecen alguna enfermedad como COVID-19 y neumonía.

Palabras clave: COVID-19, redes neuronales convolucionales, análisis de imágenes médicas, rayos X.


Abstract

COVID-19 detection on Xray chest through Deep Learning

The pandemic caused by COVID-19 generated a large quantity of computational advances in the medical area, especially on a remote mode. For these reasons, computational algorithms have had a significant impact, especially those that belong to the field of artificial intelligence (AI), with convolutional neural networks (CNN) being a representative example. This work shows the development of a system that supports the diagnosis of pulmonary diseases produced by COVID-19 and pneumonia, using a convolutional neural network architecture applied to X-ray images. The algorithm will also be able to distinguish if the lungs are healthy or with a pulmonary disease, such as COVID-19 and pneumonia.

Keywords: COVID-19, Convolutional neural network, Medical Image Analysis, X-ray.
 

Fecha de recepción: 23 de noviembre de 2021
Fecha de publicación: marzo de 2023

TIES, REVISTA DE TECNOLOGÍA E INNOVACIÓN EN EDUCACIÓN SUPERIOR (www.ties.unam.mx) 2023, Año 4, No. 7, marzo 2023, es una publicación semestral editada por la Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Alcaldía Coyoacán, C.P. 04510, Ciudad de México, a través de la Dirección General de Cómputo y de Tecnologías de Información y Comunicación, (DGTIC), Circuito Exterior s/n, Ciudad Universitaria, Alcaldía Coyoacán, C.P. 04510, Ciudad de México, Teléfono: (55) 56228166, https://www.ties.unam.mx, revista.ties@unam.mx. Editor responsable: Mtra. Lizbeth Luna González. Número de reserva de Derechos de Autor otorgado por INDAUTOR: 04-2019-011816190900-203 ISSN: 2683-2968, ambos otorgados por el Instituto Nacional del Derecho de Autor. Responsable de la última actualización de este número, Dirección General de Cómputo y de Tecnologías de Información y Comunicación, (DGTIC). Circuito Exterior s/n, Ciudad Universitaria, Alcaldía Coyoacán, C.P. 04510, Ciudad de México, fecha de la última modificación, diciembre de 2022. El contenido de los artículos es responsabilidad de los autores y no refleja el punto de vista de los árbitros, del Editor o de la UNAM. Se autoriza la reproducción total o parcial de los textos aquí publicados siempre y cuando se cite la fuente completa y la dirección electrónica de la publicación. La revista se ha desarrollado sin fines de lucro, con finalidades de diseminación del conocimiento, bajo licencia Creative Commons Reconocimiento-NoComercial (CC BY-NC-SA 4.0). Hecho en México, 2023.