DOI del artículo: https://doi.org/10.22201/dgtic.26832968e.2022.7.3
Resumen • Introducción • Desarrollo • Resultados • Conclusiones • Bibliografía • [Versión PDF]
5/5
[1] World Health Organization. Who coronavirus (covid-19) dashboard. [En línea]. Disponible en: https://covid19.who.int/. [Consultado en diciembre 8, 2021].
[2] M. M. Fachi, R. O. Vilhena, A. F. Cobre, F. S. Tonin, B. Böger, R. Pontarolo, “Systematic review with meta-analysis of the accuracy of diagnostic tests for covid-19,” 2021.
[3] J. Dinnes et al., “Rapid, point-of-care antigen and molecular-based tests for diagnosis of sars-cov-2 infection,” Cochrane Database of Systematic Reviews, 2021.
[4] M.V. Valueva, N.N. Nagornov, P.A. Lyakhov, G.V. Valuev, and N.I. Chervyakov. “Application of the residue number system to reduce hardware costs of the convolutional neural network implementation,” Mathematics and Computers in Simulation, 2020.
[5] J. Olveres, et al., “What is new in computer vision and artificial intelligence in medical image analysis applications,” Quantitative imaging in medicine and surgery, 2021.
[6] C. Hyukdoo, “CNN Output Optimization for More Balanced Classification,” The International Journal of Fuzzy Logic and Intelligent Systems, 2017.
[7] J.P. Cohen, P. Morrison, L. Dao, “Covid-19 image data collection,” Computing Research Repository, 2020.
[8] M. E. H. Chowdhury, et al., “Can ai help in screening viral and covid-19 pneumonia?,” IEEE Access, vol. 8, pp. 132665-132676, 2020.
[9] T. Rahman, et al., “Exploring the effect of image enhancement techniques on covid-19 detection using chest x-ray images,” Computers in Biology and Medicine, 2021.
[10] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri and R. M. Summers, “ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases,” Computing Research Repository, 2017.
[11] D. Kermany, K. Zhang, M. Goldbaum, “Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification,” Mendeley Data, V2, 2018.
[12] A. Krizhevsky, I. Sutskever, G.E. Hinton, “Imagenet classification with deep convolutional neural networks,” Curran Associates, 2012.
[13] J. Howard, S. Gugger. “Deep Learning for Coders with Fastai and PyTorch: AI Applications Without a PhD,” Canadá: O’Reilly Media, 2020.
[14] L. N. Smith, “No more pesky learning rate guessing games,” Computing Research Repository, 2015.
Cómo se cita
M. Gómez-Macedo, J. Olveres-Montiel, G. Fuentes-Pineda, B. Escalante-Ramírez y F. Arámbula-Cosío, "Detección de COVID-19 en radiografías de tórax mediante aprendizaje profundo," TIES, Revista de Tecnología e Innovación en Educación Superior, no. 7, abril, 2022. [En línea]. Disponible en: https://ties.unam.mx/ [Consultado en mes día, año].
Fecha de recepción: 23 de noviembre de 2021
Fecha de publicación: marzo de 2023
Resumen • Introducción • Desarrollo • Resultados • Conclusiones • Bibliografía • [Versión PDF]