DOI del artículo: https://doi.org/10.22201/dgtic.26832968e.2022.7.1
6/6
[1] “Number of social network users worldwide 2017 to 2025,” Statista, 2021. [En línea]. Disponible en: https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/. [Consultado en abril 27, 2022].
[2] “2020 World Population Data Sheet,” World Population Data Sheet, 2021. [En línea]. Disponible en: https://interactives.prb.org/2020-wpds/ [Consultado en abril 27, 2022].
[3] “Censo de población y vivienda 2020,” Instituto Nacional de Geografía, Estadística e Informática (INEGI), 2020. [En línea]. Disponible en: https://www.inegi.org.mx/programas/ccpv/2020/. [Consultado en abril 27, 2022].
[4] P. Metaxas y E. Mustafaraj, “Social Media and the Elections,” Science, vol. 338, no. 6106, 2012.
[5] M. T. Niles, B. F. Emery, A. J. Reagan, P. S. Dodds y C. M. Danforth, “Social media usage patterns during natural hazards,” PLOS ONE, vol. 14, no. 2, 2019. DOI:10.1371/journal.pone.0210484
[6] S. Chancellor y M. De Choudhury, “Methods in predictive techniques for mental health status on social media: a critical review,” npj Digital Medicine, vol. 3, no. 43, 2020. https://doi.org/10.1038/s41746-020-0233-7
[7] A. J. Stewart, M. Mosleh, M. Diakonova, A. A. Arechar, D. G. Rand y J. B. Plotkin, “Information gerrymandering and undemocratic decisions,” Nature, vol. 573, 2019.
[8] H. Lee, “Voters’ involvement, attitude, and confidence in the era of new media,” Palgrave Communications, vol. 6, no. 1, 2020.
[9] K. Shoyama, Q. Cui, M. Hanashima, H. Sano y Y. Usuda, “Emergency flood detection using multiple information sources: Integrated analysis of natural hazard monitoring and social media data,” Science of The Total Environment, vol. 767, 2021.
[10] C. C. Yang, H. Yang, L. Jiang y M. Zhang, “Social Media Mining for Drug Safety Signal Detection,” de International Workshop on Smart Health and Wellbeing, Maui, Hawaii, 2012.
[11] S. Behl, A. Rao, S. Aggarwal, S. Chadha y H. Pannu, “Twitter for disaster relief through sentiment analysis for COVID-19 and natural hazard crises,” International Journal of Disaster Risk Reduction, vol. 55, 2021.
[12] M. Graham, S. A. Hale y D. Gaffney, “Where in the World Are You? Geolocation and Language Identification in Twitter,” The Professional Geographer, vol. 66, no. 4, 2014.
[13] A. Sadilek, H. Kautz y J. P. Bigham, “Finding your friends and following them to where you are,” de ACM international conference on Web search and data mining, Seattle, Washington, 2012.
[14] W. Li, P. Serdyukov, A. P. d. Vries, C. Eickhoff y M. Larson, “The where in the tweet,” ACM international conference on Information and knowledge management, Glasgow, Scotland, 2011.
[15] H.-W. Chang, D. Lee, M. Eltaher y J. Lee, “@Phillies Tweeting from Philly? Predicting Twitter User Locations with Spatial Word Usage,” de International Conference on Advances in Social Network Analysis and Mining, Istanbul, 2012.
[16] T. Young, D. Hazarika, S. Poria y E. Cambria, “Recent Trends in Deep Learning Based Natural Language Processing,” IEEE Computational Intelligence Magazine, vol. 13, no. 3, 2018.
[17] A. Vaswani, et al., “Attention is all you need,” de Advances in neural information processing systems, 2017.
[18] J. Cañete, G. Chaperon, R. Fuentes, J.-H. Ho, H. Kang y J. Pérez, “Spanish Pre-Trained BERT Model,” de Practical ML for Developing Countries Workshop at ICLR, 2020.
[19] A.-D. Ambrosio-Aguilar, E. Bárcenas, G. Molero-Castillo y R. Aldeco-Pérez, “Geolocation of Tweets in Spanish with Transformer Encoders,” de International Conference in Software Engineering Research and Innovation, 2021.
[20] B. Huang y K. M. Carley, “A Hierarchical Location Prediction Neural Network for Twitter User Geolocation,” de Conference on Empirical Methods in Natural Language Processing, 2019.
Fecha de recepción: 23 de noviembre de 2021
Fecha de publicación: marzo de 2023